کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4592878 1335156 2006 30 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
The shape of extremal functions for Poincaré–Sobolev-type inequalities in a ball
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
The shape of extremal functions for Poincaré–Sobolev-type inequalities in a ball
چکیده انگلیسی

We study extremal functions for a family of Poincaré–Sobolev-type inequalities. These functions minimize, for subcritical or critical p⩾2, the quotient ‖∇u‖2/‖u‖p among all u∈H1(B)∖{0} with ∫Bu=0. Here B is the unit ball in RN. We show that the minimizers are axially symmetric with respect to a line passing through the origin. We also show that they are strictly monotone in the direction of this line. In particular, they take their maximum and minimum precisely at two antipodal points on the boundary of B. We also prove that, for p close to 2, minimizers are antisymmetric with respect to the hyperplane through the origin perpendicular to the symmetry axis, and that, once the symmetry axis is fixed, they are unique (up to multiplication by a constant). In space dimension two, we prove that minimizers are not antisymmetric for large p.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Functional Analysis - Volume 237, Issue 1, 1 August 2006, Pages 194-223