کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4592936 1335162 2006 28 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Regularizations of products of residue and principal value currents
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Regularizations of products of residue and principal value currents
چکیده انگلیسی

Let f1 and f2 be two functions on some complex n-manifold and let φ be a test form of bidegree (n,n−2). Assume that (f1,f2) defines a complete intersection. The integral of φ/(f1f2) on {2|f1|=ϵ1,2|f2|=ϵ2} is the residue integral . It is in general discontinuous at the origin. Let χ1 and χ2 be smooth functions on [0,∞] such that χj(0)=0 and χj(∞)=1. We prove that the regularized residue integral defined as the integral of , where χj=χj(2|fj|/ϵj), is Hölder continuous on the closed first quarter and that the value at zero is the Coleff–Herrera residue current acting on φ. In fact, we prove that if φ is a test form of bidegree (n,n−1) then the integral of is Hölder continuous and tends to the -potential of the Coleff–Herrera current, acting on φ. More generally, let f1 and f2 be sections of some vector bundles and assume that f1⊕f2 defines a complete intersection. There are associated principal value currents Uf and Ug and residue currents Rf and Rg. The residue currents equal the Coleff–Herrera residue currents locally. One can give meaning to formal expressions such as e.g. Uf∧Rg in such a way that formal Leibnitz rules hold. Our results generalize to products of these currents as well.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Functional Analysis - Volume 239, Issue 2, 15 October 2006, Pages 566-593