کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4592980 | 1335167 | 2006 | 13 صفحه PDF | دانلود رایگان |

Let A be the generator of a cosine function on a Banach space X. In many cases, for example if X is a UMD-space, A+B generates a cosine function for each B∈L(D((ω−A)1/2),X). If A is unbounded and , then we show that there exists a rank-1 operator B∈L(D(γ(ω−A)),X) such that A+B does not generate a cosine function. The proof depends on a modification of a Baire argument due to Desch and Schappacher. It also allows us to prove the following. If A+B generates a distribution semigroup for each operator B∈L(D(A),X) of rank-1, then A generates a holomorphic C0-semigroup. If A+B generates a C0-semigroup for each operator B∈L(D(γ(ω−A)),X) of rank-1 where 0<γ<1, then the semigroup T generated by A is differentiable and ‖T′(t)‖=O(t−α) as t↓0 for any α>1/γ. This is an approximate converse of a perturbation theorem for this class of semigroups.
Journal: Journal of Functional Analysis - Volume 238, Issue 1, 1 September 2006, Pages 340-352