کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4592992 1335171 2006 34 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Multivariate polynomial inequalities with respect to doubling weights and A∞ weights
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Multivariate polynomial inequalities with respect to doubling weights and A∞ weights
چکیده انگلیسی

In one-dimensional case, various important, weighted polynomial inequalities, such as Bernstein, Marcinkiewicz–Zygmund, Nikolskii, Schur, Remez, etc., have been proved under the doubling condition or the slightly stronger A∞ condition on the weights by Mastroianni and Totik in a recent paper [G. Mastroianni, V. Totik, Weighted polynomial inequalities with doubling and A∞ weights, Constr. Approx. 16 (1) (2000) 37–71]. The main purpose of this paper is to prove multivariate analogues of these results. We establish analogous weighted polynomial inequalities on some multivariate domains, such as the unit sphere Sd−1, the unit ball Bd, and the general compact symmetric spaces of rank one. Moreover, positive cubature formulae based on function values at scattered sites are established with respect to the doubling weights on these multivariate domains. Some of these multi-dimensional results are new even in the unweighted case. Our proofs are based on the investigation of a new maximal function for spherical polynomials.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Functional Analysis - Volume 235, Issue 1, 1 June 2006, Pages 137-170