کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4593004 1335172 2006 19 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Equivalence conditions for on-diagonal upper bounds of heat kernels on self-similar spaces
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Equivalence conditions for on-diagonal upper bounds of heat kernels on self-similar spaces
چکیده انگلیسی

We obtain the equivalence conditions for an on-diagonal upper bound of heat kernels on self-similar measure energy spaces. In particular, this upper bound of the heat kernel is equivalent to the discreteness of the spectrum of the generator of the Dirichlet form, and to the global Poincaré inequality. The key ingredient of the proof is to obtain the Nash inequality from the global Poincaré inequality. We give two examples of families of spaces where the global Poincaré inequality is easily derived. They are the post-critically finite (p.c.f.) self-similar sets with harmonic structure and the products of self-similar measure energy spaces.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Functional Analysis - Volume 237, Issue 2, 15 August 2006, Pages 427-445