کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4595724 1336131 2017 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
On a theorem by Brewer
ترجمه فارسی عنوان
درباره یک قضیه توسط Brewer
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
چکیده انگلیسی

One of the most frequently referenced monographs on power series rings, “Power Series over Commutative Rings” by James W. Brewer, states in Theorem 21 that if M is a non-SFT maximal ideal of a commutative ring R   with identity, then there exists an infinite ascending chain of prime ideals in the power series ring R〚X〛R〚X〛, Q0⊊Q1⊊⋯⊊Qn⊊⋯Q0⊊Q1⊊⋯⊊Qn⊊⋯ such that Qn∩R=MQn∩R=M for each n  . Moreover, the height of M〚X〛M〚X〛 is infinite. In this paper, we show that the above theorem is false by presenting two counter examples. The first counter example shows that the height of M〚X〛M〚X〛 can be zero (and hence there is no chain Q0⊊Q1⊊⋯⊊Qn⊊⋯Q0⊊Q1⊊⋯⊊Qn⊊⋯ of prime ideals in R〚X〛R〚X〛 satisfying Qn∩R=MQn∩R=M for each n). In this example, the ring R   is one-dimensional. In the second counter example, we prove that even if the height of M〚X〛M〚X〛 is uncountably infinite, there may be no infinite chain {Qn}{Qn} of prime ideals in R〚X〛R〚X〛 satisfying Qn∩R=MQn∩R=M for each n.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Pure and Applied Algebra - Volume 221, Issue 1, January 2017, Pages 36–44
نویسندگان
, ,