کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4595766 | 1336134 | 2016 | 31 صفحه PDF | دانلود رایگان |
Let (C,⊗,1)(C,⊗,1) be an abelian symmetric monoidal category satisfying certain conditions and let X be a scheme over (C,⊗,1)(C,⊗,1) in the sense of Toën and Vaquié. In this paper, we construct torsion theories on the categories OX-ModOX-Mod and QCoh(X)QCoh(X) respectively of OXOX-modules and quasi-coherent sheaves on X, when X is Noetherian and integral over (C,⊗,1)(C,⊗,1). Thereafter, we study these torsion theories with respect to the quasi-coherator QX:OX-Mod⟶QCoh(X)QX:OX-Mod⟶QCoh(X) that is right adjoint to the inclusion iX:QCoh(X)⟶OX-ModiX:QCoh(X)⟶OX-Mod. Finally, we obtain an alternative description of the quasi-coherator QX(F)QX(F) as a subsheaf of FF, when F∈OX-ModF∈OX-Mod satisfies certain conditions. Along the way, we present further results on the notions of “Noetherian” and “integral” for schemes over (C,⊗,1)(C,⊗,1) that we believe to be of independent interest.
Journal: Journal of Pure and Applied Algebra - Volume 220, Issue 9, September 2016, Pages 3017–3047