کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
459634 696270 2014 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Adaptive blacklist-based packet filter with a statistic-based approach in network intrusion detection
ترجمه فارسی عنوان
فیلتر بسته مبتنی بر سیاهپوست با روشی مبتنی بر آمار در تشخیص نفوذ شبکه؟
کلمات کلیدی
تشخیص نفوذ شبکه، فیلتر بسته تولید لیست سیاه، سیستم سازگار، تطبیق امضا
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر شبکه های کامپیوتری و ارتباطات
چکیده انگلیسی

Network intrusion detection systems (NIDS) are widely deployed in various network environments. Compared to an anomaly based NIDS, a signature-based NIDS is more popular in real-world applications, because of its relatively lower false alarm rate. However, the process of signature matching is a key limiting factor to impede the performance of a signature-based NIDS, in which the cost is at least linear to the size of an input string and the CPU occupancy rate can reach more than 80% in the worst case. In this paper, we develop an adaptive blacklist-based packet filter using a statistic-based approach aiming to improve the performance of a signature-based NIDS. The filter employs a blacklist technique to help filter out network packets based on IP confidence and the statistic-based approach allows the blacklist generation in an adaptive way, that is, the blacklist can be updated periodically. In the evaluation, we give a detailed analysis of how to select weight values in the statistic-based approach, and investigate the performance of the packet filter with a DARPA dataset, a real dataset and in a real network environment. Our evaluation results under various scenarios show that our proposed packet filter is encouraging and effective to reduce the burden of a signature-based NIDS without affecting network security.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Network and Computer Applications - Volume 39, March 2014, Pages 83–92
نویسندگان
, ,