کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4598456 1631085 2016 32 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Real eigenvalue statistics for products of asymmetric real Gaussian matrices
ترجمه فارسی عنوان
آمار واقعی برای محصولات ماتریسهای گاوس واقعی نامتقارن
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
چکیده انگلیسی

Random matrices formed from i.i.d. standard real Gaussian entries have the feature that the expected number of real eigenvalues is non-zero. This property persists for products of such matrices, independently chosen, and moreover it is known that as the number of matrices in the product tends to infinity, the probability that all eigenvalues are real tends to unity. We quantify the distribution of the number of real eigenvalues for products of finite size real Gaussian matrices by giving an explicit Pfaffian formula for the probability that there are exactly k real eigenvalues as a determinant with entries involving particular Meijer G-functions. We also compute the explicit form of the Pfaffian correlation kernel for the correlation between real eigenvalues, and the correlation between complex eigenvalues. The simplest example of these — the eigenvalue density of the real eigenvalues — gives by integration the expected number of real eigenvalues. Our ability to perform these calculations relies on the construction of certain skew-orthogonal polynomials in the complex plane, the computation of which is carried out using their relationship to particular random matrix averages.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Linear Algebra and its Applications - Volume 510, 1 December 2016, Pages 259–290
نویسندگان
, ,