کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4598771 1631104 2016 33 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
The minimum rank problem for circulants
ترجمه فارسی عنوان
حداقل مشکل رتبه برای گرد و غبار
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
چکیده انگلیسی

The minimum rank problem is to determine for a graph G the smallest rank of a Hermitian (or real symmetric) matrix whose off-diagonal zero-nonzero pattern is that of the adjacency matrix of G. Here G is taken to be a circulant graph, and only circulant matrices are considered. The resulting graph parameter is termed the minimum circulant rank   of the graph. This value is determined for every circulant graph in which a vertex neighborhood forms a consecutive set, and in this case is shown to coincide with the usual minimum rank. Under the additional restriction to positive semidefinite matrices, the resulting parameter is shown to be equal to the smallest number of dimensions in which the graph has an orthogonal representation with a certain symmetry property, and also to the smallest number of terms appearing among a certain family of polynomials determined by the graph. This value is then determined when the number of vertices is prime. The analogous parameter over RR is also investigated.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Linear Algebra and its Applications - Volume 491, 15 February 2016, Pages 386–418
نویسندگان
, ,