کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4598901 1631110 2015 41 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
The Kalman–Yakubovich–Popov inequality for differential-algebraic systems
ترجمه فارسی عنوان
نابرابری یکابوویچ کلاماناپاپو برای سیستمهای دیفرانسیل جبری
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
چکیده انگلیسی

In this paper we revisit the Kalman–Yakubovich–Popov lemma for differential-algebraic control systems. This lemma relates the positive semi-definiteness of the Popov function on the imaginary axis to the solvability of a linear matrix inequality on a certain subspace. Further emphasis is placed on the Lur'e equation, whose solution set consists, loosely speaking, of the rank-minimizing solutions of the Kalman–Yakubovich–Popov inequality. We show that there is a correspondence between the solution set of the Lur'e equation and the deflating subspaces of certain even matrix pencils. Finally, we show that under certain conditions the Lur'e equation admits stabilizing, anti-stabilizing, and extremal solutions. We note that, for our results, we neither assume impulse controllability nor make any assumptions on the index of the system.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Linear Algebra and its Applications - Volume 485, 15 November 2015, Pages 153–193
نویسندگان
, , ,