کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4598904 1631110 2015 28 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
On a type of commutative algebras
ترجمه فارسی عنوان
بر روی یک نوع جبر متغیر؟
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
چکیده انگلیسی

We introduce some basic concepts for Jacobi–Jordan algebras such as: representations, crossed products or Frobenius/metabelian/co-flag objects. A new family of solutions for the quantum Yang–Baxter equation is constructed arising from any 3-step nilpotent Jacobi–Jordan algebra. Crossed products are used to construct the classifying object for the extension problem in its global form. For a given Jacobi–Jordan algebra A and a given vector space V   of dimension cc, a global non-abelian cohomological object GH2(A,V) is constructed: it classifies, from the view point of the extension problem, all Jacobi–Jordan algebras that have a surjective algebra map on A   with kernel of dimension cc. The object GH2(A,k) responsible for the classification of co-flag algebras is computed, all 1+dim(A)1+dim(A) dimensional Jacobi–Jordan algebras that have an algebra surjective map on A are classified and the automorphism groups of these algebras is determined. Several examples involving special sets of matrices and symmetric bilinear forms as well as equivalence relations between them (generalizing the isometry relation) are provided.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Linear Algebra and its Applications - Volume 485, 15 November 2015, Pages 222–249
نویسندگان
, ,