کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4598950 1631113 2015 15 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Tucker's theorem for almost skew-symmetric matrices and a proof of Farkas' lemma
ترجمه فارسی عنوان
قضیه تاکر برای تقریبا ماتریس متضاد تقریبی و اثبات لما فورکاس
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
چکیده انگلیسی

A real square matrix A is said to be almost skew-symmetric if its symmetric part has rank one. In this article certain fundamental questions on almost skew-symmetric matrices are considered. Among other things, necessary and sufficient conditions on the entries of a matrix in order for it to be almost skew-symmetric are presented. Sums and subdirect sums are studied. Certain new results for the Moore–Penrose inverse of an almost skew-symmetric matrix are proved. An interesting analogue of Tucker's theorem for skew-symmetric matrices is derived for almost skew-symmetric matrices. Surprisingly, this analogue leads to a proof of Farkas' lemma.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Linear Algebra and its Applications - Volume 482, 1 October 2015, Pages 55–69
نویسندگان
, ,