کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4599518 1631143 2014 21 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Lowest-rank solutions of continuous and discrete Lyapunov equations over symmetric cone
ترجمه فارسی عنوان
راه حل های کمترین رتبه معادلات پیوسته و گسسته ی لیاپانوف بر روی مخروط متقارن
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
چکیده انگلیسی

The low-rank solutions of continuous and discrete Lyapunov equations are of great importance but generally difficult to compute in control system analysis and design. Fortunately, Mesbahi and Papavassilopoulos (1997) [30] showed that with the semidefinite cone constraint, the lowest-rank solutions of the discrete Lyapunov inequality can be efficiently solved by a linear semidefinite programming. In this paper, we further show that the lowest-rank solutions of both the continuous and discrete Lyapunov equations over symmetric cone are unique and can be exactly solved by their convex relaxations, the symmetric cone linear programming problems. Therefore, they are polynomial-time solvable. Since the underlying symmetric cone is a more general algebraic setting which contains the semidefinite cone as a special case, our results also answer an open question proposed by Recht, Fazel and Parrilo (2010) [36].

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Linear Algebra and its Applications - Volume 452, 1 July 2014, Pages 68–88
نویسندگان
, , ,