کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4604258 | 1337428 | 2014 | 18 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Existence of immersed spheres minimizing curvature functionals in non-compact 3-manifolds
ترجمه فارسی عنوان
وجود کره های غوطه ور شده به حداقل رساندن کارکردهای انحنای در 3-منیفولد های غیر فشرده
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
آنالیز ریاضی
چکیده انگلیسی
We study curvature functionals for immersed 2-spheres in non-compact, three-dimensional Riemannian manifold (M,h) without boundary. First, under the assumption that (M,h) is the euclidean 3-space endowed with a semi-perturbed metric with perturbation small in C1 norm and of compact support, we prove that if there is some point x¯âM with scalar curvature RM(x¯)>0 then there exists a smooth embedding f:S2âªM minimizing the Willmore functional 14â«|H|2, where H is the mean curvature. Second, assuming that (M,h) is of bounded geometry (i.e. bounded sectional curvature and strictly positive injectivity radius) and asymptotically euclidean or hyperbolic we prove that if there is some point x¯âM with scalar curvature RM(x¯)>6 then there exists a smooth immersion f:S2âªM minimizing the functional â«(12|A|2+1), where A is the second fundamental form. Finally, adding the bound KM⩽2 to the last assumptions, we obtain a smooth minimizer f:S2âªM for the functional â«(14|H|2+1). The assumptions of the last two theorems are satisfied in a large class of 3-manifolds arising as spacelike timeslices solutions of the Einstein vacuum equation in case of null or negative cosmological constant.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Annales de l'Institut Henri Poincare (C) Non Linear Analysis - Volume 31, Issue 4, JulyâAugust 2014, Pages 707-724
Journal: Annales de l'Institut Henri Poincare (C) Non Linear Analysis - Volume 31, Issue 4, JulyâAugust 2014, Pages 707-724
نویسندگان
Andrea Mondino, Johannes Schygulla,