کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4605818 | 1631347 | 2016 | 15 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Volumes and limits of manifolds with Ricci curvature and mean curvature bounds
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
آنالیز ریاضی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
We consider smooth Riemannian manifolds with nonnegative Ricci curvature and smooth boundary. First we prove a global Laplacian comparison theorem in the barrier sense for the distance to the boundary. We apply this theorem to obtain volume estimates of the manifold and of regions of the manifold near the boundary depending upon an upper bound on the area and on the inward pointing mean curvature of the boundary. We prove that families of oriented manifolds with uniform bounds of this type are compact with respect to the Sormani–Wenger Intrinsic Flat (SWIF) distance.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Differential Geometry and its Applications - Volume 48, October 2016, Pages 23–37
Journal: Differential Geometry and its Applications - Volume 48, October 2016, Pages 23–37
نویسندگان
Raquel Perales,