کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4605939 1337671 2014 22 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A solvable string on a Lorentzian surface
ترجمه فارسی عنوان
یک رشته قابل حل بر روی سطح لورنتسی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
چکیده انگلیسی

It is shown that there are nonlinear sigma models which are Darboux integrable and possess a solvable Vessiot group in addition to those whose Vessiot groups are central extensions of semi-simple Lie groups. They govern harmonic maps between Minkowski space R1,1R1,1 and certain complete, non-constant curvature 2-metrics. The solvability of the Vessiot group permits a reduction of the general Cauchy problem to quadrature. We treat the specific case of harmonic maps from Minkowski space into a non-constant curvature Lorentzian 2-metric, λ. Despite the completeness of λ   we exhibit a Cauchy problem with real analytic initial data which blows up in finite time. We also derive a hyperbolic Weierstrass representation formula for all harmonic maps from R1,1R1,1 into λ.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Differential Geometry and its Applications - Volume 33, Supplement, March 2014, Pages 177–198
نویسندگان
, ,