کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4606054 1337677 2013 16 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Oscillator algebras with semi-equicontinuous coadjoint orbits
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Oscillator algebras with semi-equicontinuous coadjoint orbits
چکیده انگلیسی
A unitary representation of a, possibly infinite dimensional, Lie group G is called semibounded if the corresponding operators idπ(x) from the derived representations are uniformly bounded from above on some non-empty open subset of the Lie algebra g. Not every Lie group has non-trivial semibounded unitary representations, so that it becomes an important issue to decide when this is the case. In the present paper we describe a complete solution of this problem for the class of generalized oscillator groups, which are semidirect products of Heisenberg groups with a one-parameter group γ. For these groups it turns out that the existence of non-trivial semibounded representations is equivalent to the existence of the so-called semi-equicontinuous non-trivial coadjoint orbits, a purely geometric condition on the coadjoint action. This in turn can be expressed by a positivity condition on the Hamiltonian function corresponding to the infinitesimal generator D of γ. A central point of our investigations is that we make no assumption on the structure of the spectrum of D. In particular, D can be any skew-adjoint operator on a Hilbert space.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Differential Geometry and its Applications - Volume 31, Issue 2, April 2013, Pages 268-283
نویسندگان
, ,