کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4606125 | 1631363 | 2014 | 16 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Almost Schur lemma for manifolds with boundary
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
آنالیز ریاضی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
In this paper, we prove the almost Schur theorem, introduced by De Lellis and Topping, for the Riemannian manifold M of nonnegative Ricci curvature with totally geodesic boundary. Examples are given to show that it is optimal when the dimension of M is at least 5. We also prove that the almost Schur theorem is true when M is a 4-dimensional manifold of nonnegative scalar curvature with totally geodesic boundary. Finally we obtain a generalization of the almost Schur theorem in all dimensions only by assuming the Ricci curvature is bounded below.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Differential Geometry and its Applications - Volume 32, February 2014, Pages 97–112
Journal: Differential Geometry and its Applications - Volume 32, February 2014, Pages 97–112
نویسندگان
Pak Tung Ho,