کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4606263 1337693 2012 15 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
The behavior of curvature functions at cusps and inflection points
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
The behavior of curvature functions at cusps and inflection points
چکیده انگلیسی

At a 3/2-cusp of a given plane curve γ(t)γ(t), both of the Euclidean curvature κgκg and the affine curvature κAκA diverge. In this paper, we show that each of |sg|κg and (sA)2κA(sA)2κA (called the Euclidean and affine normalized curvature  , respectively) at a 3/2-cusp is a C∞C∞-function of the variable t  , where sgsg (resp. sAsA) is the Euclidean (resp. affine) arclength parameter of the curve corresponding to the 3/2-cusp sg=0sg=0 (resp. sA=0sA=0). Moreover, we give a characterization of the behavior of the curvature functions κgκg and κAκA at 3/2-cusps. On the other hand, inflection points are also singular points of curves in affine geometry. We give a similar characterization of affine curvature functions near generic inflection points. As an application, new affine invariants of 3/2-cusps and generic inflection points are given.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Differential Geometry and its Applications - Volume 30, Issue 3, June 2012, Pages 285–299
نویسندگان
, ,