کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4606282 1337695 2011 27 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Generalized complex and Dirac structures on homogeneous spaces
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Generalized complex and Dirac structures on homogeneous spaces
چکیده انگلیسی

The aim of this paper is to study generalized complex geometry (Hitchin, 2002) [6] and Dirac geometry (Courant, 1990) [3], (Courant and Weinstein, 1988) [4] on homogeneous spaces. We offer a characterization of equivariant Dirac structures on homogeneous spaces, which is then used to construct new examples of generalized complex structures. We consider Riemannian symmetric spaces, quotients of compact groups by closed connected subgroups of maximal rank, and nilpotent orbits in sln(R)sln(R). For each of these cases, we completely classify equivariant Dirac structures. Additionally, we consider equivariant Dirac structures on semisimple orbits in a semisimple Lie algebra. Here equivariant Dirac structures can be described in terms of root systems or by certain data involving parabolic subalgebras.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Differential Geometry and its Applications - Volume 29, Issue 5, October 2011, Pages 615–641
نویسندگان
,