کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4606316 1337697 2010 15 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
On Weingarten surfaces in Euclidean and Lorentzian 3-space
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
On Weingarten surfaces in Euclidean and Lorentzian 3-space
چکیده انگلیسی

We study the neutral Kähler metric on the space of time-like lines in Lorentzian E13, which we identify with the total space of the tangent bundle to the hyperbolic plane. We find all of the infinitesimal isometries of this metric, as well as the geodesics, and interpret them in terms of the Lorentzian metric on E13. In addition, we give a new characterisation of Weingarten surfaces in Euclidean E3E3 and Lorentzian E13 as the vanishing of the scalar curvature of the associated normal congruence in the space of oriented lines. Finally, we relate our construction to the classical Weierstrass representation of minimal and maximal surfaces in E3E3 and E13.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Differential Geometry and its Applications - Volume 28, Issue 4, August 2010, Pages 454–468
نویسندگان
, ,