کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4606452 | 1337704 | 2010 | 11 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Volume growth and the topology of pointed Gromov-Hausdorff limits
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
آنالیز ریاضی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
In this paper we examine topological properties of pointed metric measure spaces (Y,p) that can be realized as the pointed Gromov-Hausdorff limit of a sequence of complete, Riemannian manifolds {(Min,pi)}i=1â with nonnegative Ricci curvature. Cheeger and Colding (1997) [7] showed that given such a sequence of Riemannian manifolds it is possible to define a measure ν on the limit space (Y,p). In the current work, we generalize previous results of the author to examine the relationship between the topology of (Y,p) and its volume growth. Namely, given constants α(k,n) which were computed in Munn (2010) [16] and based on earlier work of G. Perelman, we show that if limrââν(Bp(r))Ïnrn>α(k,n), then the kth homotopy group of (Y,p) is trivial. The constants α(k,n) are explicit and depend only on n, the dimension of the manifolds {(Min,pi)}, and k, the dimension of the homotopy in (Y,p).
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Differential Geometry and its Applications - Volume 28, Issue 5, October 2010, Pages 532-542
Journal: Differential Geometry and its Applications - Volume 28, Issue 5, October 2010, Pages 532-542
نویسندگان
Michael Munn,