| کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن | 
|---|---|---|---|---|
| 4606550 | 1337711 | 2006 | 9 صفحه PDF | دانلود رایگان | 
عنوان انگلیسی مقاله ISI
												Describing the universal cover of a compact limit
												
											دانلود مقاله + سفارش ترجمه
													دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
																																												موضوعات مرتبط
												
													مهندسی و علوم پایه
													ریاضیات
													آنالیز ریاضی
												
											پیش نمایش صفحه اول مقاله
												 
												چکیده انگلیسی
												If X is the Gromov-Hausdorff limit of a sequence of Riemannian manifolds Min with a uniform lower bound on Ricci curvature, Sormani and Wei have shown that the universal cover XË of X exists [C. Sormani, G. Wei, Hausdorff convergence and universal covers, Trans. Amer. Math. Soc. 353 (9) (2001) 3585-3602 (electronic)]; [C. Sormani, G. Wei, Universal covers for Hausdorff limits of noncompact spaces, Trans. Amer. Math. Soc. 356 (3) (2004) 1233-1270 (electronic). [15]]. For the case where X is compact, we provide a description of XË in terms of the universal covers MËi of the manifolds. More specifically we show that if X¯ is the pointed Gromov-Hausdorff limit of the universal covers MËi then there is a subgroup H of Iso(X¯) such that XË=X¯/H. We call H the small action limit group and prove a similar result for compact length spaces with uniformly bounded dimension.
											ناشر
												Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Differential Geometry and its Applications - Volume 24, Issue 5, September 2006, Pages 554-562
											Journal: Differential Geometry and its Applications - Volume 24, Issue 5, September 2006, Pages 554-562
نویسندگان
												John Ennis, Guofang Wei,