کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4606651 | 1337719 | 2007 | 14 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Weyl quantization for semidirect products
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
آنالیز ریاضی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Let G be the semidirect product VâK where K is a connected semisimple non-compact Lie group acting linearily on a finite-dimensional real vector space V. Let O be a coadjoint orbit of G associated by the Kirillov-Kostant method of orbits with a unitary irreducible representation Ï of G. We consider the case when the corresponding little group K0 is a maximal compact subgroup of K. We realize the representation Ï on a Hilbert space of functions on Rn where n=dim(K)âdim(K0). By dequantizing Ï we then construct a symplectomorphism between the orbit O and the product R2nÃOâ² where Oâ² is a little group coadjoint orbit. This allows us to obtain a Weyl correspondence on O which is adapted to the representation Ï in the sense of [B. Cahen, Quantification d'une orbite massive d'un groupe de Poincaré généralisé, C. R. Acad. Sci. Paris Série I 325 (1997) 803-806]. In particular we recover well-known results for the Poincaré group.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Differential Geometry and its Applications - Volume 25, Issue 2, April 2007, Pages 177-190
Journal: Differential Geometry and its Applications - Volume 25, Issue 2, April 2007, Pages 177-190
نویسندگان
Benjamin Cahen,