کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4609344 1338507 2016 61 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Stabilizing effect of large average initial velocity in forced dissipative PDEs invariant with respect to Galilean transformations
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Stabilizing effect of large average initial velocity in forced dissipative PDEs invariant with respect to Galilean transformations
چکیده انگلیسی

We describe a topological method to study the dynamics of dissipative PDEs on a torus with rapidly oscillating forcing terms. We show that a dissipative PDE, which is invariant with respect to the Galilean transformations, with a large average initial velocity can be reduced to a problem with rapidly oscillating forcing terms. We apply the technique to the viscous Burgers' equation, and the incompressible 2D Navier–Stokes equations with a time-dependent forcing. We prove that for a large initial average speed the equation admits a bounded eternal solution, which attracts all other solutions forward in time. For the incompressible 3D Navier–Stokes equations we establish the existence of a locally attracting solution.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Differential Equations - Volume 261, Issue 8, 15 October 2016, Pages 4648–4708
نویسندگان
, ,