کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4609344 | 1338507 | 2016 | 61 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Stabilizing effect of large average initial velocity in forced dissipative PDEs invariant with respect to Galilean transformations
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
آنالیز ریاضی
پیش نمایش صفحه اول مقاله
چکیده انگلیسی
We describe a topological method to study the dynamics of dissipative PDEs on a torus with rapidly oscillating forcing terms. We show that a dissipative PDE, which is invariant with respect to the Galilean transformations, with a large average initial velocity can be reduced to a problem with rapidly oscillating forcing terms. We apply the technique to the viscous Burgers' equation, and the incompressible 2D Navier–Stokes equations with a time-dependent forcing. We prove that for a large initial average speed the equation admits a bounded eternal solution, which attracts all other solutions forward in time. For the incompressible 3D Navier–Stokes equations we establish the existence of a locally attracting solution.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Differential Equations - Volume 261, Issue 8, 15 October 2016, Pages 4648–4708
Journal: Journal of Differential Equations - Volume 261, Issue 8, 15 October 2016, Pages 4648–4708
نویسندگان
Jacek Cyranka, Piotr Zgliczyński,