کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4610032 1338541 2015 26 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Asymptotic stability of a two species chemotaxis system with non-diffusive chemoattractant
ترجمه فارسی عنوان
پایداری همبستگی یک سیستم شیمیایی دو گونه با شیمیایی غیرفعال
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
چکیده انگلیسی

We study the behavior of two biological populations “u” and “v” attracted by the same chemical substance whose behavior is described in terms of second order parabolic equations. The model considers a logistic growth of the species and the interactions between them are relegated to the chemoattractant production. The system is completed with a third equation modeling the evolution of chemical. We assume that the chemical “w” is a non-diffusive substance and satisfies an ODE, more precisely,{ut=Δu−∇⋅(uχ1(w)∇w)+μ1u(1−u),x∈Ω,t>0,vt=Δv−∇⋅(vχ2(w)∇w)+μ2v(1−v),x∈Ω,t>0,wt=h(u,v,w),x∈Ω,t>0, under appropriate boundary and initial conditions in an n-dimensional open and bounded domain Ω. We consider the cases of positive chemo-sensitivities, not necessarily constant elements. The chemical production function h increases as the concentration of the species “u” and “v” increases. We first study the global existence and uniform boundedness of the solutions by using an iterative approach. The asymptotic stability of the homogeneous steady state is a consequence of the growth of h  , χiχi and the size of μiμi. Finally, some examples of the theoretical results are presented for particular functions h   and χiχi.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Differential Equations - Volume 258, Issue 5, 5 March 2015, Pages 1592–1617
نویسندگان
, ,