کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4610436 1338563 2014 21 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Algebraic and analytical tools for the study of the period function
ترجمه فارسی عنوان
ابزار جبری و تحلیلی برای مطالعه عملکرد دوره
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
چکیده انگلیسی

In this paper we consider analytic planar differential systems having a first integral of the form H(x,y)=A(x)+B(x)y+C(x)y2H(x,y)=A(x)+B(x)y+C(x)y2 and an integrating factor κ(x)κ(x) not depending on y. Our aim is to provide tools to study the period function of the centers of this type of differential system and to this end we prove three results. Theorem A gives a characterization of isochronicity, a criterion to bound the number of critical periods and a necessary condition for the period function to be monotone. Theorem B is intended for being applied in combination with Theorem A in an algebraic setting that we shall specify. Finally, Theorem C is devoted to study the number of critical periods bifurcating from the period annulus of an isochrone perturbed linearly inside a family of centers. Four different applications are given to illustrate these results.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Differential Equations - Volume 257, Issue 7, 1 October 2014, Pages 2464–2484
نویسندگان
, ,