کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4610639 1338576 2014 26 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A unified proof on the partial regularity for suitable weak solutions of non-stationary and stationary Navier–Stokes equations
ترجمه فارسی عنوان
اثبات یکپارچه در نظم جزئی برای راه حل های ضعیف مناسب ثابت معادلات ناوایرا استوکس غیر ثابت و ثابت
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
چکیده انگلیسی

The partial regularity of the suitable weak solutions to the Navier–Stokes equations in RnRn with n=2,3,4n=2,3,4 and the stationary Navier–Stokes equations in RnRn for n=2,3,4,5,6n=2,3,4,5,6 are investigated in this paper. Using some elementary observation of these equations together with De Giorgi iteration method, we present a unified proof on the results of Caffarelli, Kohn and Nirenberg [1], Struwe [17], Dong and Du [5], and Dong and Strain [7]. Particularly, we obtain the partial regularity of the suitable weak solutions to the 4d non-stationary Navier–Stokes equations, which improves the previous result of [5], where Dong and Du studied the partial regularity of smooth solutions of the 4d Navier–Stokes equations at the first blow-up time.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Differential Equations - Volume 256, Issue 3, 1 February 2014, Pages 1224–1249
نویسندگان
, ,