| کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن | 
|---|---|---|---|---|
| 4610733 | 1338582 | 2014 | 22 صفحه PDF | دانلود رایگان | 
عنوان انگلیسی مقاله ISI
												Zero measure Cantor spectra for continuum one-dimensional quasicrystals
												
											دانلود مقاله + سفارش ترجمه
													دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
																																												موضوعات مرتبط
												
													مهندسی و علوم پایه
													ریاضیات
													آنالیز ریاضی
												
											پیش نمایش صفحه اول مقاله
												 
												چکیده انگلیسی
												We study Schrödinger operators on RR with measures as potentials. Choosing a suitable subset of measures we can work with a dynamical system consisting of measures. We then relate properties of this dynamical system with spectral properties of the associated operators. The constant spectrum in the strictly ergodic case coincides with the union of the zeros of the Lyapunov exponent and the set of non-uniformities of the transfer matrices. This result enables us to prove Cantor spectra of zero Lebesgue measure for a large class of operator families, including many operator families generated by aperiodic subshifts.
ناشر
												Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Differential Equations - Volume 256, Issue 6, 15 March 2014, Pages 1905–1926
											Journal: Journal of Differential Equations - Volume 256, Issue 6, 15 March 2014, Pages 1905–1926
نویسندگان
												Daniel Lenz, Christian Seifert, Peter Stollmann,