کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4610891 | 1338591 | 2013 | 29 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
On the solutions of a model equation for shallow water waves of moderate amplitude
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
آنالیز ریاضی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
This paper is concerned with the Cauchy problem of a model equation for shallow water waves of moderate amplitude, which was proposed by A. Constantin and D. Lannes [The hydrodynamical relevance of the Camassa-Holmand Degasperis-Procesi equations, Arch. Ration. Mech. Anal. 192 (2009) 165-186]. First, the local well-posedness of the model equation is obtained in Besov spaces Bp,rs, p,râ[1,â], s>max{32,1+1p} (which generalize the Sobolev spaces Hs) by using Littlewood-Paley decomposition and transport equation theory. Second, the local well-posedness in critical case (with s=32, p=2, r=1) is considered. Moreover, with analytic initial data, we show that its solutions are analytic in both variables, globally in space and locally in time. Finally, persistence properties on strong solutions are also investigated.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Differential Equations - Volume 255, Issue 8, 15 October 2013, Pages 2101-2129
Journal: Journal of Differential Equations - Volume 255, Issue 8, 15 October 2013, Pages 2101-2129
نویسندگان
Yongsheng Mi, Chunlai Mu,