کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4613475 1631517 2006 44 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Topological degree methods for perturbations of operators generating compact C0C0 semigroups
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Topological degree methods for perturbations of operators generating compact C0C0 semigroups
چکیده انگلیسی

The main aim of this paper is to construct a topological degree for maps -A+F:M∩D(A)→E-A+F:M∩D(A)→E where a densely defined closed operator A:D(A)→EA:D(A)→E of a Banach space E   is such that -A-A is the generator of a compact C0C0 semigroup, and F:M→EF:M→E is a locally Lipschitz map defined on a neighborhood retract M⊂EM⊂E. If M is a closed convex cone, then a degree formula allowing an effective computation of the degree is proved. This formula provides an infinite-dimensional counterpart of the well-known Krasnosel'skii theorem. By the use of the introduced topological degree and an abstract result concerning branching of fixed points, the bifurcation of periodic points of the parameterized boundary value problemu˙=-λAu+λF(t,u),λ>0,u(t)∈M,u(0)=u(T)is studied. Examples of applications to partial differential equations are discussed.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Differential Equations - Volume 220, Issue 2, 15 January 2006, Pages 434–477
نویسندگان
,