کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4624508 1631617 2016 61 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
On the free Lie algebra with multiple brackets
ترجمه فارسی عنوان
درباره جبر لی آزاد با براکت های متعدد
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات کاربردی
چکیده انگلیسی

It is a classical result that the multilinear component of the free Lie algebra is isomorphic (as a representation of the symmetric group) to the top (co)homology of the proper part of the poset of partitions ΠnΠn tensored with the sign representation. We generalize this result in order to study the multilinear component of the free Lie algebra with multiple compatible Lie brackets. We introduce a new poset of weighted partitions Πnk that allows us to generalize the result. The new poset is a generalization of ΠnΠn and of the poset of weighted partitions Πnw introduced by Dotsenko and Khoroshkin and studied by the author and Wachs for the case of two compatible brackets. We prove that the poset Πnk with a top element added is EL-shellable and hence Cohen–Macaulay. This and other properties of Πnk enable us to answer questions posed by Liu on free multibracketed Lie algebras. In particular, we obtain various dimension formulas and multicolored generalizations of the classical Lyndon and comb bases for the multilinear component of the free Lie algebra. We also obtain a plethystic formula for the Frobenius characteristic of the representation of the symmetric group on the multilinear component of the free multibracketed Lie algebra.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Advances in Applied Mathematics - Volume 79, August 2016, Pages 37–97
نویسندگان
,