کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4624786 1631643 2014 16 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Positivity properties of Jacobi–Stirling numbers and generalized Ramanujan polynomials
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات کاربردی
پیش نمایش صفحه اول مقاله
Positivity properties of Jacobi–Stirling numbers and generalized Ramanujan polynomials
چکیده انگلیسی

Generalizing recent results of Egge and Mongelli, we show that each diagonal sequence of the Jacobi–Stirling numbers Jc(n,k;z)Jc(n,k;z) and JS(n,k;z)JS(n,k;z) is a Pólya frequency sequence if and only if z∈[−1,1]z∈[−1,1] and study the z-total positivity properties of these numbers. Moreover, the polynomial sequences{∑k=0nJS(n,k;z)yk}n⩾0and{∑k=0nJc(n,k;z)yk}n⩾0 are proved to be strongly {z,y}{z,y}-log-convex. In the same vein, we extend a recent result of Chen et al. about the Ramanujan polynomials to Chapotonʼs generalized Ramanujan polynomials. Finally, bridging the Ramanujan polynomials and a sequence arising from the Lambert W function, we obtain a neat proof of the unimodality of the latter sequence, which was proved previously by Kalugin and Jeffrey.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Advances in Applied Mathematics - Volume 53, February 2014, Pages 12–27
نویسندگان
, ,