کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4628940 | 1340570 | 2013 | 18 صفحه PDF | دانلود رایگان |

In this paper we develop a numerical method for a nonlinear parabolic partial differential equation arising from pricing European options under transaction costs. The method is based on an upwind finite difference scheme for the spatial discretization and a fully implicit time-stepping scheme. We prove that the system matrix from this scheme is an M-matrix and that the approximate solution converges unconditionally to the viscosity solution to the equation by showing that the scheme is consistent, monotone and unconditionally stable. A Newton iterative algorithm is proposed for solving the discretized nonlinear system of which the Jacobian matrix is shown to be also an M-matrix. Numerical experiments are performed to demonstrate the accuracy and robustness of the method.
Journal: Applied Mathematics and Computation - Volume 219, Issue 16, 15 April 2013, Pages 8811–8828