کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4645182 | 1632197 | 2014 | 31 صفحه PDF | دانلود رایگان |

We present an a posteriori error analysis for the discontinuous Galerkin discretization error of first-order linear symmetric hyperbolic systems of partial differential equations with smooth solutions. We perform a local error analysis by writing the local error as a series and showing that its leading term can be expressed as a linear combination of Legendre polynomials of degree p and p+1p+1. We apply these asymptotic results to observe that projections of the error are pointwise O(hp+2)O(hp+2)-superconvergent in some cases. Then we solve relatively small local problems to compute efficient and asymptotically exact estimates of the finite element error. We present computational results for several linear hyperbolic systems in acoustics and electromagnetism.
Journal: Applied Numerical Mathematics - Volume 76, February 2014, Pages 101–131