| کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
|---|---|---|---|---|
| 4646944 | 1342320 | 2015 | 8 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Low edges in 3-polytopes
ترجمه فارسی عنوان
لبه های کم در 3 قطعه ای
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
نقشه هواپیما، نمودار هواپیما، 3-پلیتوپ، اموال ساختاری، ارتفاع لبه
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
ریاضیات گسسته و ترکیبات
چکیده انگلیسی
The height h(e)h(e) of an edge ee in a 3-polytope is the maximum degree of the two vertices and two faces incident with ee. In 1940, Lebesgue proved that every 3-polytope without so called pyramidal edges has an edge ee with h(e)≤11h(e)≤11. In 1995, this upper bound was improved to 10 by Avgustinovich and Borodin. Recently, we improved it to 9 and constructed a 3-polytope without pyramidal edges satisfying h(e)≥8h(e)≥8 for each ee.The purpose of this paper is to prove that every 3-polytope without pyramidal edges has an edge ee with h(e)≤8h(e)≤8.In different terms, this means that every plane quadrangulation without a face incident with three vertices of degree 3 has a face incident with a vertex of degree at most 8, which is tight.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Discrete Mathematics - Volume 338, Issue 12, 6 December 2015, Pages 2234–2241
Journal: Discrete Mathematics - Volume 338, Issue 12, 6 December 2015, Pages 2234–2241
نویسندگان
O.V. Borodin, A.O. Ivanova,
