کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4647094 1342327 2015 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Geometric constructions of two-character sets
ترجمه فارسی عنوان
ساختار هندسی مجموعه های دو عاملی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات گسسته و ترکیبات
چکیده انگلیسی
A two-character set in a finite projective space is a set of points with the property that the intersection number with any hyperplanes only takes two values. In this paper constructions of some two-character sets are given. In particular, infinite families of tight sets of the symplectic generalized quadrangle W(3,q2) and the Hermitian surface H(3,q2) are provided. A quasi-Hermitian variety H in PG(r,q2) is a combinatorial generalization of the (non-degenerate) Hermitian variety H(r,q2) so that H and H(r,q2) have the same number of points and the same intersection numbers with hyperplanes. Here we construct two families of quasi-Hermitian varieties, for r,q both odd, admitting PΓO+(r+1,q) and PΓO−(r+1,q) as automorphisms group.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Discrete Mathematics - Volume 338, Issue 3, 6 March 2015, Pages 202-208
نویسندگان
,