کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4647400 | 1632423 | 2014 | 9 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Relating the annihilation number and the 2-domination number of a tree
ترجمه فارسی عنوان
مربوط به تعداد نابودی و تعداد سلطه 2 درخت است
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
2-سلطه شماره سلطه، شماره انهدام،
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
ریاضیات گسسته و ترکیبات
چکیده انگلیسی
A set S of vertices in a graph G is a 2-dominating set if every vertex of G not in S is adjacent to at least two vertices in S. The 2-domination numberγ2(G) is the minimum cardinality of a 2-dominating set in G. The annihilation numbera(G) is the largest integer k such that the sum of the first k terms of the nondecreasing degree sequence of G is at most the number of edges in G. The conjecture-generating computer program, Graffiti.pc, conjectured that γ2(G)â¤a(G)+1 holds for every connected graph G. It is known that this conjecture is true when the minimum degree is at least 3. The conjecture remains unresolved for minimum degree 1 or 2. In this paper, we prove that the conjecture is indeed true when G is a tree, and we characterize the trees that achieve equality in the bound. It is known that if T is a tree on n vertices with n1 vertices of degree 1, then γ2(T)â¤(n+n1)/2. As a consequence of our characterization, we also characterize trees T that achieve equality in this bound.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Discrete Mathematics - Volume 319, 28 March 2014, Pages 15-23
Journal: Discrete Mathematics - Volume 319, 28 March 2014, Pages 15-23
نویسندگان
Wyatt J. Desormeaux, Michael A. Henning, Douglas F. Rall, Anders Yeo,