کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4649131 1632435 2010 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Trees with a given order and matching number that have maximum general Randić index
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات گسسته و ترکیبات
پیش نمایش صفحه اول مقاله
Trees with a given order and matching number that have maximum general Randić index
چکیده انگلیسی

The general Randić index Rα(G)Rα(G) of a graph GG is defined by Rα(G)=∑uv(d(u)d(v))αRα(G)=∑uv(d(u)d(v))α, where d(u)d(u) is the degree of a vertex uu, and the summation extends over all edges uvuv of GG. Some results on trees with a given order and matching number that have minimum general Randić index have been obtained. However, the corresponding maximum problem has not been studied, and usually the maximum problem is much harder than the minimum one. In this paper, we characterize the structure of the trees with a given order and matching number that have maximum general Randić index for α>1α>1 and give a sharp upper bound for 0<α≤10<α≤1.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Discrete Mathematics - Volume 310, Issues 17–18, 28 September 2010, Pages 2249–2257
نویسندگان
, , ,