کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
465062 | 697482 | 2009 | 20 صفحه PDF | دانلود رایگان |

In this paper, we propose a Markov chain-based analytical framework for modeling the behavior of the medium access control (MAC) protocol in IEEE 802.15.4 wireless networks. Two scenarios are of interest. First, we consider networks where the (sensor) nodes communicate directly to the network coordinator (the final sink). Then, we consider cluster-tree (CT) scenarios where the sources communicate to the coordinator through a series of intermediate relay, which forward the received packets and do not generate traffic on their own. In both scenarios, no acknowledgment messages are used to confirm successful data packet deliveries and communications are beaconed (i.e., they rely on synchronization packets denoted as “beacons”). In all cases, our focus is on networks where the sources and the relays have finite queues (denoted as buffers) to store data packets. The network performance is evaluated in terms of aggregate network throughput and packet delivery delay. The performance predicted by the proposed analytical framework is in very good agreement with realistic ns-2 simulation results.
Journal: Performance Evaluation - Volume 66, Issue 12, December 2009, Pages 722–741