کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4651102 1342520 2007 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A characterization of maximal non-k-factor-critical graphs
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات گسسته و ترکیبات
پیش نمایش صفحه اول مقاله
A characterization of maximal non-k-factor-critical graphs
چکیده انگلیسی

A graph G of order p is k-factor-critical,where p and k are positive integers with the same parity, if the deletion of any set of k vertices results in a graph with a perfect matching. G is called maximal non-k-factor-critical if G is not k  -factor-critical but G+eG+e is k  -factor-critical for every missing edge e∉E(G)e∉E(G). A connected graph G   with a perfect matching on 2n2n vertices is k  -extendable, for 1⩽k⩽n-11⩽k⩽n-1, if for every matching M of size k in G there is a perfect matching in G containing all edges of M. G is called maximal non-k-extendable if G is not k  -extendable but G+eG+e is k  -extendable for every missing edge e∉E(G)e∉E(G) . A connected bipartite graph G   with a bipartitioning set (X,Y)(X,Y) such that |X|=|Y|=n|X|=|Y|=n is maximal non-k-extendable bipartite if G is not k  -extendable but G+xyG+xy is k  -extendable for any edge xy∉E(G)xy∉E(G) with x∈Xx∈X and y∈Yy∈Y. A complete characterization of maximal non-k-factor-critical graphs, maximal non-k-extendable graphs and maximal non-k-extendable bipartite graphs is given.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Discrete Mathematics - Volume 307, Issue 1, 6 January 2007, Pages 108–114
نویسندگان
, , ,