کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4655298 1632945 2014 47 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Limit shape of random convex polygonal lines: Even more universality
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات گسسته و ترکیبات
پیش نمایش صفحه اول مقاله
Limit shape of random convex polygonal lines: Even more universality
چکیده انگلیسی

The paper concerns the limit shape (under some probability measure) of convex polygonal lines with vertices on Z+2, starting at the origin and with the right endpoint n=(n1,n2)→∞n=(n1,n2)→∞. In the case of the uniform measure, an explicit limit shape γ⁎:={(x1,x2)∈R+2:1−x1+x2=1} was found independently by Vershik (1994) [19], Bárány (1995) [3], and Sinaĭ (1994) [16]. Recently, Bogachev and Zarbaliev (1999) [5] proved that the limit shape γ⁎γ⁎ is universal for a certain parametric family of multiplicative probability measures generalizing the uniform distribution. In the present work, the universality result is extended to a much wider class of multiplicative measures, including (but not limited to) analogs of the three meta-types of decomposable combinatorial structures — multisets, selections, and assemblies. This result is in sharp contrast with the one-dimensional case where the limit shape of Young diagrams associated with integer partitions heavily depends on the distributional type.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Combinatorial Theory, Series A - Volume 127, September 2014, Pages 353–399
نویسندگان
,