کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4656112 1343420 2011 30 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Asymptotic enumeration and limit laws for graphs of fixed genus
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات گسسته و ترکیبات
پیش نمایش صفحه اول مقاله
Asymptotic enumeration and limit laws for graphs of fixed genus
چکیده انگلیسی

It is shown that the number of labelled graphs with n   vertices that can be embedded in the orientable surface SgSg of genus g grows asymptotically likec(g)n5(g−1)/2−1γnn!c(g)n5(g−1)/2−1γnn! where c(g)>0c(g)>0, and γ≈27.23γ≈27.23 is the exponential growth rate of planar graphs. This generalizes the result for the planar case g=0g=0, obtained by Giménez and Noy.An analogous result for non-orientable surfaces is obtained. In addition, it is proved that several parameters of interest behave asymptotically as in the planar case. It follows, in particular, that a random graph embeddable in SgSg has a unique 2-connected component of linear size with high probability.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Combinatorial Theory, Series A - Volume 118, Issue 3, April 2011, Pages 748–777
نویسندگان
, , , , ,