کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4657848 1633078 2016 25 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Verbal covering properties of topological spaces
ترجمه فارسی عنوان
خواص پوشش کروی فضاهای توپولوژیکی؟
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات هندسه و توپولوژی
چکیده انگلیسی

For any topological space X   we study the relation between the universal uniformity UXUX, the universal quasi-uniformity qUXqUX and the universal pre-uniformity pUXpUX on X  . For a pre-uniformity UU on a set X and a word v   in the two-letter alphabet {+,−}{+,−} we define the verbal power UvUv of UU and study its boundedness numbers ℓ(Uv)ℓ(Uv), ℓ¯(Uv), L(Uv)L(Uv) and L¯(Uv). The boundedness numbers of (the Boolean operations over) the verbal powers of the canonical pre-uniformities pUXpUX, qUXqUX and UXUX yield new cardinal characteristics ℓv(X)ℓv(X), ℓ¯v(X), Lv(X)Lv(X), L¯v(X), qℓv(X)qℓv(X), qℓ¯v(X), qLv(X)qLv(X), qL¯v(X), uℓ(X)uℓ(X) of a topological space X  , which generalize all known cardinal topological invariants related to (star-)covering properties. We study the relation of the new cardinal invariants ℓvℓv, ℓ¯v to classical cardinal topological invariants such as Lindelöf number ℓ, density d, and spread s  . The simplest new verbal cardinal invariant is the foredensity ℓ−(X)ℓ−(X) defined for a topological space X as the smallest cardinal κ   such that for any neighborhood assignment (Ox)x∈X(Ox)x∈X there is a subset A⊂XA⊂X of cardinality |A|≤κ|A|≤κ that meets each neighborhood OxOx, x∈Xx∈X. It is clear that ℓ−(X)≤d(X)≤ℓ−(X)⋅χ(X)ℓ−(X)≤d(X)≤ℓ−(X)⋅χ(X). We shall prove that ℓ−(X)=d(X)ℓ−(X)=d(X) if |X|<ℵω|X|<ℵω. On the other hand, for every singular cardinal κ   (with κ≤22cf(κ)κ≤22cf(κ)) we construct a (totally disconnected) T1T1-space X   such that ℓ−(X)=cf(κ)<κ=|X|=d(X)ℓ−(X)=cf(κ)<κ=|X|=d(X).

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Topology and its Applications - Volume 201, 15 March 2016, Pages 181–205
نویسندگان
, ,