کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4658109 1633082 2016 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Semi-stratifiable spaces with monotonically normal compactifications
ترجمه فارسی عنوان
فضاهای نیمه فشرده با تکه تکه کردن نرمال یکنواختی
کلمات کلیدی
فضایی طبیعی مونوتونی؛ تکه تکه شدن طبیعی به صورت مونوتونی؛ راه حل رودین مشکل نیکل؛ فضای قابل متراکم؛ زیرمجموعه قابل شمارش؛فضای σ گسسته ؛ نیمه stratifiable؛ Stratifiable؛ پراکنده؛ دنیس
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات هندسه و توپولوژی
چکیده انگلیسی

In this paper we use Mary Ellen Rudin's solution of Nikiel's problem to investigate metrizability of certain subsets of compact monotonically normal spaces. We prove that if H is a semi-stratifiable space that can be covered by a σ-locally-finite collection of closed metrizable subspaces and if H embeds in a monotonically normal compact space, then H is metrizable. It follows that if H is a semi-stratifiable space with a monotonically normal compactification, then H is metrizable if it satisfies any one of the following: H has a σ-locally finite cover by compact subsets; H is a σ-discrete space; H is a scattered; H is σ-compact. In addition, a countable space X has a monotonically normal compactification if and only if X is metrizable. We also prove that any semi-stratifiable space with a monotonically normal compactification is first-countable and is the union of a family of dense metrizable subspaces. Having a monotonically normal compactification is a crucial hypothesis in these results because R.W. Heath has given an example of a countable non-metrizable stratifiable (and hence monotonically normal) group. We ask whether a first-countable semi-stratifiable space must be metrizable if it has a monotonically normal compactification. This is equivalent to “If X is a first-countable stratifiable space with a monotonically normal compactification, must H be metrizable?”

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Topology and its Applications - Volume 197, 1 January 2016, Pages 21–27
نویسندگان
, ,