کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4658241 1633086 2015 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Applications of the reflection functors in paratopological groups
ترجمه فارسی عنوان
کاربرد ویژگی های انعکاسی در گروه های پاراتوپولوژیک
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات هندسه و توپولوژی
چکیده انگلیسی

We apply TiTi-reflections for i=0,1,2,3i=0,1,2,3, as well as the regular reflection defined by the author in [20] for the further study of paratopological and semitopological groups. We show that many topological properties are invariant and/or inverse invariant under taking TiTi-reflections in paratopological groups. Using this technique, we prove that every σ-compact paratopological group has the Knaster property and, hence, is of countable cellularity.We also prove that an arbitrary product of locally feebly compact paratopological groups is a Moscow space, thus generalizing a similar fact established earlier for products of feebly compact topological groups. The proof of the latter result is based on the fact that the functor T2T2 of Hausdorff reflection ‘commutes’ with arbitrary products of semitopological groups. In fact, we show that the functors T0T0 and T1T1 also commute with products of semitopological groups, while the functors T3T3 and Reg commute with products of paratopological groups.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Topology and its Applications - Volume 192, 1 September 2015, Pages 176–187
نویسندگان
,