کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4658810 1633112 2014 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Some new classes of topological spaces and annihilator ideals
ترجمه فارسی عنوان
برخی از کلاس های جدید فضاهای توپولوژی و آرمان های نابود کننده
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات هندسه و توپولوژی
چکیده انگلیسی

By a characterization of semiprime SA-rings by Birkenmeier, Ghirati and Taherifar in [4, Theorem 4.4], and by the topological characterization of C(X)C(X) as a Baer-ring by Stone and Nakano in [11, Theorem 3.25], it is easy to see that C(X)C(X) is an SA-ring (resp., IN-ring) if and only if X is an extremally disconnected space. This result motivates the following questions: Question (1): What is X if for any two ideals I and J   of C(X)C(X) which are generated by two subsets of idempotents, Ann(I)+Ann(J)=Ann(I∩J)Ann(I)+Ann(J)=Ann(I∩J)? Question (2): When does for any ideal I   of C(X)C(X) exists a subset S   of idempotents such that Ann(I)=Ann(S)Ann(I)=Ann(S)? Along the line of answering these questions we introduce two classes of topological spaces. We call X an EF (resp., EZ)-space if disjoint unions of clopen sets are completely separated (resp., every regular closed subset is the closure of a union of clopen subsets). Topological properties of EF (resp., EZ)-spaces are investigated. As a consequence, a completely regular Hausdorff space X   is an FαFα-space in the sense of Comfort and Negrepontis for each infinite cardinal α if and only if X is an EF and EZ-space. Among other things, for a reduced ring R   (resp., J(R)=0J(R)=0) we show that Spec(R)Spec(R) (resp., Max(R)Max(R)) is an EZ-space if and only if for every ideal I of R there exists a subset S of idempotents of R   such that Ann(I)=Ann(S)Ann(I)=Ann(S).

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Topology and its Applications - Volume 165, 15 March 2014, Pages 84–97
نویسندگان
,