| کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن | 
|---|---|---|---|---|
| 4661801 | 1633469 | 2013 | 39 صفحه PDF | دانلود رایگان | 
عنوان انگلیسی مقاله ISI
												The descriptive set-theoretical complexity of the embeddability relation on models of large size
												
											ترجمه فارسی عنوان
													پیچیدگی توصیفی نظری مجموعه ای از رابطه تعادلی در مدل های بزرگ اندازه 
													
												دانلود مقاله + سفارش ترجمه
													دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
																																												موضوعات مرتبط
												
													مهندسی و علوم پایه
													ریاضیات
													 منطق ریاضی
												
											چکیده انگلیسی
												We show that if κ is a weakly compact cardinal then the embeddability relation on (generalized) trees of size κ is invariantly universal. This means that for every analytic quasi-order R on the generalized Cantor space 2κ there is an Lκ+κ-sentence Ï such that the embeddability relation on its models of size κ, which are all trees, is Borel bi-reducible (and, in fact, classwise Borel isomorphic) to R. In particular, this implies that the relation of embeddability on trees of size κ is complete for analytic quasi-orders on 2κ. These facts generalize analogous results for κ=Ï obtained in Louveau and Rosendal (2005) [17] and Friedman and Motto Ros (2011) [6], and it also partially extends a result from Baumgartner (1976) [3] concerning the structure of the embeddability relation on linear orders of size κ.
											ناشر
												Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Annals of Pure and Applied Logic - Volume 164, Issue 12, December 2013, Pages 1454-1492
											Journal: Annals of Pure and Applied Logic - Volume 164, Issue 12, December 2013, Pages 1454-1492
نویسندگان
												Luca Motto Ros, 
											