کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4661848 1633464 2014 57 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Inside the Muchnik degrees I: Discontinuity, learnability and constructivism
ترجمه فارسی عنوان
درون مراتب Muchnik بخش اول: عدم انسجام، یادگیری و ساخت گرایی
کلمات کلیدی
تجزیه و تحلیل محاسباتی؛ ریاضیات قابل محاسبه محدود ؛ شناسایی در حد؛ درجه مدودف؛ درجه Weihrauch
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات منطق ریاضی
چکیده انگلیسی

Every computable function has to be continuous. To develop computability theory of discontinuous functions, we study low levels of the arithmetical hierarchy of nonuniformly computable functions on Baire space. First, we classify nonuniformly computable functions on Baire space from the viewpoint of learning theory and piecewise computability. For instance, we show that mind-change-bounded learnability is equivalent to finite (Π10)2-piecewise computability (where (Π10)2 denotes the difference of two Π10 sets), error-bounded learnability is equivalent to finite Δ20-piecewise computability, and learnability is equivalent to countable Π10-piecewise computability (equivalently, countable Σ20-piecewise computability). Second, we introduce disjunction-like operations such as the coproduct based on BHK-like interpretations, and then, we see that these operations induce Galois connections between the Medvedev degree structure and associated Medvedev/ Muchnik-like degree structures. Finally, we interpret these results in the context of the Weihrauch degrees and Wadge-like games.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Annals of Pure and Applied Logic - Volume 165, Issue 5, May 2014, Pages 1058–1114
نویسندگان
, ,